Ref No:

SRI KRISHNA INSTITUTE OF TECHNOLOGY, BANGALORE

COURSE PLAN

Academic Year 2019-20

Program:	B E – ELECTRONICS AND COMMUNICATION Engineering
Semester :	3
Course Code:	18EC35
Course Title:	COMPUTER ORGANIZATION
Credit / L-T-P:	3 / 3-0-0
Total Contact Hours:	40
Course Plan Author:	Mrs.SYEDA N

Academic Evaluation and Monitoring Cell

No. 29, Chimney hills, Hesaraghatta Road, Chikkabanavara BANGALORE-560090, KARNATAKA , INDIA Phone / Fax :+91-08023721315/23721477, Web: www.skit.org.in

Table of Contents

1. Course Overview
3. Course Material. .5 4. Course Prerequisites. .6 5. Content for Placement, Profession, HE and GATE. .6 B. OBE PARAMETERS. .7 1. Course Outcomes. .7 2. Course Applications. .7 3. Mapping And Justification. .8 4. Articulation Matrix. .9 5. Curricular Gap and Content. .9 6. Content Beyond Syllabus. .10 1. Course Coverage. .10 1. Course Coverage. .10 2. Continuous Internal Assessment (CIA). .10 D1. TEACHING PLAN - 1 .11 Module - 1 .12 E1. CIA EXAM - 1 .13 a. Model Question Paper - 1 .13 b. Assignment -1 .14
4. Course Prerequisites
5. Content for Placement, Profession, HE and GATE. 6 B. OBE PARAMETERS. 7 1. Course Outcomes. 7 2. Course Applications. 7 3. Mapping And Justification. 8 4. Articulation Matrix. 9 5. Curricular Gap and Content. 9 6. Content Beyond Syllabus. 10 1. Course Coverage. 10 1. Course Coverage. 10 2. Continuous Internal Assessment (CIA). 10 D1. TEACHING PLAN – 1 11 Module – 1 11 Module – 1 11 Module – 1 13 a. Model Question Paper – 1 13 b. Assignment –1 14
B. OBE PARAMETERS. 7 1. Course Outcomes. 7 2. Course Applications. 7 3. Mapping And Justification. 8 4. Articulation Matrix. 9 5. Curricular Gap and Content. 9 6. Content Beyond Syllabus. 10 C. COURSE ASSESSMENT. 10 1. Course Coverage. 10 2. Continuous Internal Assessment (CIA). 10 D1. TEACHING PLAN - 1 11 Module - 1 11 Module - 2 12 E1. CIA EXAM - 1 13 a. Model Question Paper - 1 13 b. Assignment -1 14
1. Course Outcomes. 7 2. Course Applications. 7 3. Mapping And Justification. 8 4. Articulation Matrix. 9 5. Curricular Gap and Content. 9 6. Content Beyond Syllabus. 10 1. Course Coverage. 10 1. Course Coverage. 10 2. Continuous Internal Assessment (CIA). 10 D1. TEACHING PLAN - 1 11 Module - 1 11 Module - 2 12 E1. CIA EXAM - 1 13 a. Model Question Paper - 1 13 b. Assignment -1 14
2. Course Applications
3. Mapping And Justification 8 4. Articulation Matrix 9 5. Curricular Gap and Content 9 6. Content Beyond Syllabus 10 C. COURSE ASSESSMENT 10 1. Course Coverage 10 2. Continuous Internal Assessment (CIA) 10 D1. TEACHING PLAN – 1 11 Module – 1 11 Module – 2 12 E1. CIA EXAM – 1 13 a. Model Question Paper – 1 13 b. Assignment –1 14
4. Articulation Matrix
5. Curricular Gap and Content. .9 6. Content Beyond Syllabus. .10 10 . COURSE ASSESSMENT. .10 1. Course Coverage. .10 2. Continuous Internal Assessment (CIA). .10 D1. TEACHING PLAN – 1. .11 Module – 1. .11 Module – 2. .12 E1. CIA EXAM – 1. .13 a. Model Question Paper – 1. .13 b. Assignment –1. .14
6. Content Beyond Syllabus. 10 C. COURSE ASSESSMENT. 10 1. Course Coverage. 10 2. Continuous Internal Assessment (CIA). 10 D1. TEACHING PLAN – 1. 11 Module – 1. 11 Module – 2. 12 E1. CIA EXAM – 1. 13 a. Model Question Paper – 1. 13 b. Assignment –1. 14
C. COURSE ASSESSMENT. 10 1. Course Coverage. 10 2. Continuous Internal Assessment (CIA) 10 D1. TEACHING PLAN – 1 11 Module – 1 11 Module – 2 12 E1. CIA EXAM – 1 13 a. Model Question Paper – 1 13 b. Assignment –1 14
1. Course Coverage. 10 2. Continuous Internal Assessment (CIA). 10 D1. TEACHING PLAN – 1. 11 Module – 1. 11 Module – 2. 12 E1. CIA EXAM – 1. 13 a. Model Question Paper – 1. 13 b. Assignment –1. 14
2. Continuous Internal Assessment (CIA)
D1. TEACHING PLAN - 1
Module - 1
Module - 2
E1. CIA EXAM - 1
a. Model Question Paper – 113 b. Assignment –114
b. Assignment –114
D2 TEACHING PLAN $= 2$ 18
DZ. TEACHING TEAN $= Z$
Module – 318
Module – 419
E2. CIA EXAM – 2
a. Model Question Paper - 221
b. Assignment – 221
D3. TEACHING PLAN – 325
Module – 525

Copyright ©2017. cAAS.

E3. CIA EXAM – 3	26
a. Model Question Paper – 3	26
b. Assignment – 3	27
F. EXAM PREPARATION	
1. University Model Question Paper	
2. SEE Important Questions	32
G. Content to Course Outcomes	
1. TLPA Parameters	
2. Concepts and Outcomes:	34

Note : Remove "Table of Content" before including in CP Book

Each Course Plan shall be printed and made into a book with cover page

Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher

A. COURSE INFORMATION

1. Course Overview

levels

Degree:	BE	Program:	EC
Semester:	3	Academic Year:	2019-20
Course Title:	Computer Organisation	Course Code:	18EC35
Credit / L–T–P:	3 / 3-0-0	SEE Duration:	180 Minutes
Total Contact	60 Hours	SEE Marks:	60 Marks
Hours:	00 110013	SEE MAIKS.	
CIA Marks:	40 Marks	Assignment	1 / Module
Course Plan Author:	Mrs. Syeda N	Sign	Dt:
Checked By:		Sign	Dt:
CO Targets	CIA Target : %	SEE Target:	%

Note: Define CIA and SEE % targets based on previous performance.

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute. Identify 2 concepts per module as in G.

Mod	Content	Teachi	Identified	Blooms
ule		ng	Module	Learning
		Hours	Concepts	Levels
1	Basic Structure of Computers: Computer Types,	8	Computer	L2, L4
	Functional Units, Basic Operational Concepts, Bus		Organization	
	Structures, Software, Performance - Processor Clock,		and Machine	
	Basic Performance Equation		instructions	
	Machine Instructions and Programs: Numbers,		structure	
	Arithmetic Operations and Characters, IEEE standard for			

Copyright ©2017. cAAS.

-	Total	40	-	-
5	Basic Processing Unit: Some Fundamental Concepts, Execution of a Complete Instruction,Multiple Bus Organization, Hardwired Control, Microprogrammed Control	8	Processing unit and Embedded system and large computer system	L2
4	Memory System: Basic Concepts, Semiconductor RAM Memories-Internal organization of memory chips, Static memories, Asynchronous DRAMS, Read Only Memories, Cash Memories, Virtual Memories, Secondary Storage- Magnetic Hard Disks	8	Memory System and storage devices	L2,L3
3	Input/Output Organization: Accessing I/O Devices, Interrupts – Interrupt Hardware, Enabling and Disabling Interrupts, Handling Multiple Devices, Controlling Device Requests, Direct Memory Access	8	Accessing interrupts through different techniques	L2, L4
2	 Floating point Numbers, Memory Location and Addresses, Memory Operations, Instructions and Instruction Sequencing Addressing Modes, Assembly Language, Basic Input and Output Operations, Stacks and Queues, Subroutines, Additional Instructions 	8	Input output organization and subroutines and Standard input output interfaces	L2

3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C).

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15 - 30 minutes

2. Design: Simulation and design tools used - software tools used ; Free / open source

3. Research: Recent developments on the concepts - publications in journals; conferences etc.

Modul	Details	Chapter	Availability
es		s in	
		book	
A	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
1,2,3,	Carl Hamacher, Zvonko Vranesic, Safwat Zaky: Computer	1,2,3,4,	In Lib / In
4,5	Organization, 5th Edition, Tata McGraw Hill,2002	5, 6,7, 8	Dept
В	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
1,2,3,	William Stallings: Computer Organization & Architecture, 9 th	1,2	In Lib

In Lib In Lib -
In Lib
-
-

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Students must have learnt the following Courses / Topics with described Content . . .

Mod	Course	Course Name	Topic / Description			Sem	Remarks			Blooms	
ules	Code										Level
1	18EC35	Computer	Software	e/ Knowledge	e of	Software	3	Have	used	different	Understa
		Organization						softw	are	in	nd L2
								labor	atory		
2	18EC35	Computer	No p	per-requisite		to be	3		_		_

Copyright ©2017. cAAS.

		Organization	considered as basics taught as curriculum	shall	be			
3	18EC35	Computer Organization	No per-requisite considered as basics taught as curriculum	to shall	be be	3	_	-
4	18EC35	Computer Organization	No per-requisite considered as basics taught as curriculum	to shall	be be	3	_	-
5	18EC35	Computer Organization	No per-requisite considered as basics taught as curriculum	to shall	be be	3	-	-

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Mod	Topic / Description	Area	R	emarks		Blooms
ules						Level
1	Computer Organization and	Computer	Required for	Higher	Education,	L2, L4
	Machine instructions structure	Hardware	Entrepreneurs	hip		
2	Input output organization and	IO interfacing	Industry	&	profession	L2
	subroutines and Standard input		requirements			
	output interfaces					
3	Accessing interrupts through	External	Industry	&	profession	L2, L4
	different techniques	hardware	requirements			
		interfaces				
4	Memory System and storage devices	Storage	Industry			L2,L3
		devices				
5	Processing unit and Embedded	Embedded	Industry	&	profession	L2
	system and large computer system	Systems	requirements			

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs. Identify a max of 2 Concepts per Module. Write 1 CO per Concept.

Mod	Course	Course Outcome	Teach.	Concept	Instr	Assessm	Blooms'
ules	Code.#	At the end of the course,	Hours		Method	ent	Level
		student should be able to				Method	
1	18EC35.1	Describe the basic structure of	04	Operations	Discussi	Oral	L2
		Computer, Performance		of	ons and	question	Understand

		measurement with CPU clock.		computer	Reading		
					S	and	
						Explain	
1	18EC35.2	Understand the impact of	04	Machine	Graphic	Analyze	L4
		instruction set architecture on		instruction	Organiz	and	Analyzing
		cost-performance of computer		s structure	ers and	examine	
		design and analyze with various			Discussi	and Take	
		addressing methodologies.			on	home	
						test	
2	18EC35.3	Determine the impact of	04	Input	Lecture	Question	L2
		interrupt on input output devices		output	and	s are	Understand
		in the process of interaction		organizati	Reading	converge	
		between various components.		on and	S	nt and	
				interrupts		describe	
				•		in oral	
2	18EC35.4	Understand different kind of	04	Standard	Discussi	Oral and	L2
		input output interfaces available		input	on and	describe	Understand
		for computer system by		output	Reading		
		demonstrations in lab with		interfaces	s		
		disassembling of computer.					
3	18EC35.5	Determine with the cost-	04	Memory	Reading	Student	L2
		performance issues and design		System	-		Understand
		trade-off in designing and		,	Discussi	•	
		constructing a computer				demonstr	
		processor including memory.			-	ations	
						within	
						small	
						groups	
3	18FC35.6	Describes the virtual memory	04	Storage	Graphic	Analyze	L4
-		management and secondary		devices	Organiz	and	Analyzing
		storage devices.			-	Compare	
		storage actives.			Discussi	compare	
					on		
4	18FC35 7	Determine the knowledge of	04	Arithmetic		Annly the	L3
-	102033./	designing a logic circuits and		Operations		concepts	L3 Applying
		apply to computer system.		operations		and use	L5
					•	to solve	
					-		Evaluating
						the given	
					•	problems	
					for		
					evaluati		
4	105035.0		0.4		ng	Due -t'	
4	18EC35.8	Solve the problems in binary			Demons		L3
		representation by using various		methodolo	trate	in	Applying

		methods and evaluate with		gies	problem	multiple	
		standard circuits.			-solving	contexts	
5	18EC35.9	Describe the set of hardware	04	Processing	Reading	Student	L2
		simulators to model a complex		unit	s and	presentat	Understand
		processor at the behavioral level.			Discussi	ions	
					on		
5	18EC35.10	Determine the current event in	04	Embedded	Reading	Student	L2
		the microprocessor research and		system	s and	presentat	Understand
		industry of multiprocessor and		and large	Discussi	ions and	
		embedded systems.		computer	on	oral	
				system		question	
						and	
						answers	
-	-	Total	40	-	-	-	L2-L4

2. Course Applications

Write 1 or 2 applications per CO.

Students should be able to employ / apply the course learnings to . . .

Mod	Application Area	<u> </u>	Loval
	Application Area	CO	Level
ules	Compiled from Module Applications.		
1	Understand the basic operations of computer system and learn to calculate the	CO1	L2
	performance of CPU with clock.		
2	Understand the way of writing a machine instructions and then analyze the	CO2	L4
	memory allocation methodologies.		
2	Demonstration of input output organization like accessing I/O devices and	CO3	L2
	handling of interrupt events.		
4	Expose different ways of communicating with I/O devices and standard I/O	CO4	L2
	interfaces.		
5	Acquire the knowledge of semiconductor RAM memories, Static memories,	CO5	L2
	Asynchronous DRAMS, Read only memories.		
6	1. Analyze the memory location by having knowledge of various replacement	CO6	L4
	algorithms.		
	2. Understand the view of virtual memory and secondary storage devices.		
7	Analyze and design the arithmetic operations and Evaluation of logical circuits.	C07	L3, L5
8	Apply the knowledge gained on various methodologies.	CO8	L3
9	Understand basic processing unit and organization of simple processor with	CO9	L2
	multiple bus organizations.		
10	Demonstration of various embedded system with different devices and their	CO10	L2
	processor chips to gain the importance of life-long learning.		

3. Mapping And Justification

CO - PO Mapping with mapping Level along with justification for each CO-PO pair.

To attain competency required (as defined in POs) in a specified area and the knowledge & ability required to accomplish it.

Mod	Мар	ping	Mapping	Justification for each CO-PO pair	Lev
ules			Level		el
-	CO	PO	-	'Area': 'Competency' and 'Knowledge' for specified 'Accomplishment'	-
1	CO1	PO1	L2	Knowledge of basic structure of computer is needed to build a complex circuits.	L2
1	CO1	PO2	L3	Analyze the performance of the CPU with different processor.	LE
1	CO1	PO3	L4	Processes the performance of the computer to provide solutions for complex problems.	L
1	CO1	PO4	L3	Analyze the different performance values with standard reference values.	L3
1	CO1	PO7	L2	Understand the impact of different uses of the computer and demonstrate the knowledge to find the solutions.	LZ
1	CO1	PO12	L2	Identify new technology to solve various complex problems of the computer.	LZ
1	CO2	PO1	L4	Apply the knowledge of computer designing and cost performance for implementing various methodologies for instruction set architecture.	L
1	CO2	PO2	L2	Identify the proper methodology to over come a various problems of implementing an optimized solution for different instruction sets.	Lž
1	CO2	PO3	L4	Processes the complex instruction set architecture to produce the solution that meets the cost-performance of the computer.	L
1	CO2	PO4	L4	Analyze the cost performance and various addressing methodologies to provide a solution for complex solutions.	Ľ
1	CO2	PO6	L4	Apply the reasoning for cost performance of various architecture and their uses.	L
1	CO2	PO7	L2	Understand the impact in societal and find the solutions according to environmental contexts.	L
1	CO2	PO12	L2	Information acquired from the fundamental of instruction set architecture provides lifelong learning in the context of technological change.	L
2	CO3	PO1	L5	Apply the evaluation of different hardware components associated with the input-output organization of a computer.	L
2	CO3	PO2	L4	Analysis of interaction of Input and output with processing unit on various operation.	L
2	CO3	PO3	L5	Design a system components in such a way that the performance speed should get increase.	L
2	CO3	PO4	L4	Investigate the different design of a system components and design an optimized solutions.	L
2	CO3	PO5	L2	Understand the modern tools and technique and apply that to overcome a limitation of complex engineering activities.	Lź
2	CO3	PO12	L2	Recognize the need in designing of various input-output devices.	Lź

_					
2	CO4	PO1	L2	Knowledge about the various device interfaces of the computer hardware.	L2
	CO4	PO2	L2	Identify the interfaces available for input and output devices and	L2
				analyze the different hardware components which uses these	
2				interfaces to communicate with processor.	
2	CO4	PO3	L4	Processes the system components that meets the appropriate need in	L4
				performing various operations.	
2	C04	PO4	L4	Analysis of different kind of interfaces which are available for various	L4
				input output devices.	
2	CO4	PO7	L3	Demonstrate the components of the computer by disassembling the	L3
				system to understand the interfaces.	
2	CO4	PO12	L2	Information acquired from the different kind of I/O interfaces which	L2
				requires lifelong learning in the context of technological change.	
3	CO5	PO1	L2	Knowledge of memory storage to give the solution for various	L2
				complex data storage issues.	
3	CO5	PO2	L2	Identify the problems in data storage and analyze the substantiated	L2
				conclusion using engineering research.	
3	CO5	PO3	L6	Design a solution for handling the memory management for storing	L6
				large amount of data in the system.	
3	CO5	PO4	L4	Analysis of available memory spaces in the system in designing and	L4
				constructing a computer processors.	
3	CO5	PO5	L2	Understand the latest techniques and the current need in handling	L2
				data in memory storage.	
3	CO5	PO12	L2	Identify the new technologies to evolve the future use of the memory	L2
				devices.	
3	C06	PO1	L2	Knowledge about memory management to give implement a virtual	L2
				memory space in existing device.	
3	C06	PO2	L4	Analyze the problem of memory management and identify the	L4
				solution by implementing virtual-memory spaces in the same	
				system.	
3	C06	PO3	L4	Design the virtual-memory architecture to manage the available	L4
				memory space in the storage of large data.	
3	C06	PO7	L2	Understand the impact on current system memory while	L2
				implementing a virtual memory space in the same system.	
3	C06	PO11	L5	Apply the techniques to create virtual memory spaces to manage	L5
				projects in multidisciplinary environments.	
	C06	PO12	L 2	Ability to cop up with different methodologies to create a virtual-	L 2
				memory space after learning the memory management schemes.	
4	C07	PO1	L2	Knowledge about the basic logical gates for designing a complex	L2
				architecture for system operations.	
4	C07	PO2	L2	Identify the various techniques for designing a logic circuits for	L2
				different computation.	
4	C07	PO4	L4	Investigate and analyze the circuits based on complexity of the	L4
				operation.	

4	C07	PO6	L4	Apply the methodologies in a proper manner so that computation should not lead to wrong output.	L4
4	C07	PO7	L3	Demonstrate the complex calculations solutions by implementing a optimized logic circuits.	L3
4	C07	PO12	L2	Performing mathematical operation in computer requires the performance issue when it comes to large data so life-long learning is needed in designing optimized logical circuits.	L2
4	CO8	PO1	L2	Knowledge of basic conversions is required to convert complex calculations into machine understand format.	L2
4	CO8	PO2	L2	Identify the optimized method to perform a various mathematical operations in short time.	L2
4	CO8	PO3	L5	Design the optimized circuits for complex problem-solving in the system.	L5
	CO8	PO4	L4	Analyze the various methods for conversion of numerical values into machine understandable form and evaluate the operation with standard circuits.	L4
4	CO8	PO12	L2	Information acquired from the number representation and standard circuits which provides lifelong learning in the context of technological change.	L2
5	CO9	PO1	L2	Knowledge of basic components of computer and instructions execution in the processor.	L2
5	CO9	PO2	L2	Identify the complexity of the current methods and analyze the system operations at a behavioral level of the system.	L2
5	CO9	PO3	L5	Design the set of hardware simulators for complex problems of the processor.	L5
5	CO9	PO5	L2	Select modern simulation tools for developing a optimized solution for processor operation management	L2
5	CO9	PO7	L1	Understand the impact of the hardware devices connected to the system and the need for developing more sustainable technique.	L1
5	CO9	PO12	L2	Recognize the future enhancement needed for solving a various problems in the computer world.	L2
5	CO1 0	PO1	L2	Knowledge of current events and techniques using with microprocessor to build a solution for complex operations.	L2
5	CO1 0	PO2	L2	Analyze the various current microprocessor technologies which are using in a different industries and identify the required solution for developing new methodologies.	L2
5	CO1 0	PO3	L4	Design system components for implementing automatic embedded system for home appliances and more.	L4
5	CO1 0	PO4	L5	Investigate the current research and analyze the improvements that are needed in the multiprocessing system.	L5
5	CO1 0	PO5	L4	Understand the current technologies which are available and the limitation to overcome complexity in the system.	L4
5	CO1 0	PO12	L2	Identify the broadest contexts of technological changes in the multi- core processor and in embedded system.	L2

4. Articulation Matrix

CO - PO Mapping with mapping level for each CO-PO pair, with course average attainment.

-	-	Course Outcomes										ome						-
Mod	CO.#	At the end of the course	PO															
ules		student should be able to	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03	el
1	18EC35.1	Describe the basic structure of	V	√	√	√			\checkmark					√				L2
		Computer, Performance																
		measurement with CPU clock.																
1	18EC35.2	Understand the impact of	√	√	√	√		V	\checkmark					√				L4
		instruction set architecture on																
		cost-performance of computer																
		design and analyze with																
		various addressing																
		methodologies.																
2	18EC35.3	Determine the impact of	√	√	√	√	√							√				L2
		interrupt on input output																
		devices in the process of																
		interaction between various																
		components.																
2	18EC35.4	Understand different kind of	√	√	√	√			\checkmark					√				L2
		input output interfaces																
		available for computer system																
		by demonstrations in lab with																
		disassembling of computer.																
3	18EC35.5	Determine with the cost–		√	√	√	√							√				L2
		performance issues and design																
		trade-off in designing and																
		constructing a computer																
		processor including memory.																
3	18EC35.6	Describes the virtual memory		√	√				V				V	√				L4
		management and secondary																
		storage devices.																
4		Determine the knowledge of		√		√		V	V					√				L3,
		designing a logic circuits and																L5
		apply to computer system.	,			,								,				
4		Solve the problems in binary		√	√	V			V					√				L3
		representation by using																
		various methods and evaluate																
		with standard circuits.	,											,				
5		Describe the set of hardware		√	√		√		V					√				L2
		simulators to model a complex																
		processor at the behavioral																

		level.																
5	18EC35.1	Determine the current event in	V	\checkmark	\checkmark	\checkmark	\checkmark							V				L2
	0	the microprocessor research																
		and industry of multiprocessor																
		and embedded systems.																
-	CS501PC	Average attainment (1, 2,																-
		or 3)																
-	PO, PSO	1.Engineering Knowledge; 2.Problem	ı Ar	alys	sis;	3.D	esig	gn /	Dei	veloj	ome	nt c	of Se	olut	ions	; 4.	Con	duct
		Investigations of Complex Problem	s;	5.M	ode	rn	Тоо	l U	Isag	e; (5.Th	e i	Engi	inee	er a	nd	Soc	iety;
		7. Environment and Sustainability; 8. Ethics; 9. Individual and Teamwork; 10. Communication;																
		11. Project Management and Finance; 12. Life-long Learning; S1. Software Engineering; S2. Data																
		Base Management; S3.Web Design																

5. Curricular Gap and Content

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Mod	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
ules					

6. Content Beyond Syllabus

Topics & contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

Mod ules	Gap Topic	Area	Actions Planned	Schedule Planned	Resources Person	PO Mapping

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Mod	Title	Teach		No. of	quest	ion in	Exam		CO	Levels
ules			CIA-	CIA-	CIA-	Asg	Extra	SEE		
		Hours	1	2	3		Asg			
1	Basic structure of computer	8	2	-	-	1	1	2	CO1, CO2	L2, L4
2	Input/output Organization	8	2	-	-	1	1	2	CO3, CO4	L2
3	Memory system	8	-	2	-	1	1	2	CO5, CO6	L2, L4
4	Arithmetic operations	8	-	2	-	1	1	2	CO7, CO8	L3,L5
5	Basic processing unit and	8	-	-	4	1	1	2	CO9,	L2
	Embedded system								CO10	
-	Total	40	4	4	4	5	5	10	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

<u> </u>	1			
Mod	Evaluation	Weightage in	СО	Levels
ules		Marks		
1, 2	CIA Exam – 1	30	CO1 , CO2,CO3 , CO4	L4, L3 , L3 , L4
3, 4	CIA Exam - 2	30	CO5, CO6,CO7,CO8	L3 , L4 , L4, L2
5	CIA Exam - 3	30	CO9,CO10	L2,L2
1, 2	Assignment – 1	10	CO1 , CO2,CO3 , CO4	L4, L3 , L3 , L4
3, 4	Assignment – 2	10	CO5, CO6,CO7,CO8	L3 , L4 , L4, L2
5	Assignment – 3	10	CO9,CO10	L2,L2
1, 2	Seminar – 1		-	-
3, 4	Seminar – 2		_	_
5	Seminar – 3		_	-
1, 2	Quiz – 1		_	_
3, 4	Quiz – 2		_	_
5	Quiz – 3		-	-
1 -	Other Activities – Mini Project	-	-	-
5				
	Final CIA Marks	40	•	-

D1. TEACHING PLAN – 1

Module – 1

Title:	Basic structure of computer	Appr	8 Hrs
		Time:	
а	Course Outcomes	-	Bloom
			S

-	The student should be able to:	-	Level
1	Describe the basic structure of Computer, Performance measurement with CPU clock.	CO1	L2
2	Understand the impact of instruction set architecture on cost- performance of computer design and analyze with various addressing methodologies.	CO2	L4
b	Course Schedule	_	_
Class No	Module Content Covered	СО	Level
1	Basic Operational Concepts	CO1	L2
2	Bus Structures	CO1	L2
3	Processor Clock	CO1	L2
4	Basic Performance Equation	CO1	L2
5	CPU Clock Rate	CO1	L2
6	Performance Measurement	CO1	L2
7	Machine Instructions and Programs	CO2	L2
8	Memory Location and Addresses	CO2	L2
9	Memory Operations	CO2	L2
10	Instructions and Instruction Sequencing.	CO2	L4
11	Addressing Modes	CO2	L4
12	Assembly Language	CO2	L4
13	Basic Input and Output Operations	CO2	L2
14	Stacks and Queues, Subroutines	CO2	L2
15	Additional Instructions	CO2	L3
16	Encoding of Machine Instructions	CO2	L2
С	Application Areas	СО	Level
1	Use of the various operations of computer system and learn to calculate the performance of CPU with clock.	CO1	L2
2	Used in addressing a memory location in computer system.	CO2	L4
d	Review Questions	-	_
1	With the neat diagram explain different processor register? List the steps needed to execute the machine instruction.	CO1	L2
2	Explain briefly about performance evaluation by using various bench marks.	CO1	L2
3	Draw the basic functional units of a computer.	CO1	L2
4	Explain the operations of stacks and queues.	CO2	L4
5	Discuss about different types of addressing modes.	CO2	L4
6	Explain the operations of stacks and queues.	CO2	L4
7	Give the difference between RISC and CISC.	CO2	L2
8	Write an algorithm for the division of floating point number and illustrate	CO2	L2

	with an example.		
9	Explain BIG-ENDIAN and LITTLE-ENDIAN methods of byte addressing with proper exaple.	C01	L2
е	Experiences	_	
1			
2			
3			
4			
5			

Module - 2

Title:	Input/output Organization	Appr	8 Hrs
		Time:	
а	Course Outcomes	-	Bloom
_	The student should be able to:	_	Level
1	Determine the impact of interrupt on input output devices in the process of interaction between various components.	CO3	L2
2	Understand different kind of input output interfaces available for computer system by demonstrations in lab with disassembling of computer.		L2
b	Course Schedule	-	_
Class No	Module Content Covered	СО	Level
17	Input/Output Organization: Accessing I/O Devices	CO3	L2
18	Interrupts – Interrupt Hardware	CO3	L2
19	Enabling and Disabling Interrupts	CO3	L2
20	Handling Multiple Devices	CO3	L2
21	Controlling Device Requests	CO3	L2
22	Exceptions	CO3	L2
23	Direct Memory Access	CO3	L2
24	Buses Interface Circuits	CO4	L2
25	Standard I/O interfaces: PCI BUS, SCSI BUS, USB.	CO4	L2
С	Application Areas	CO	Level
1	Use to Demonstrate of input output organization like accessing I/O devices and handling of interrupt events.	CO3	L2
2	Expose different ways of communicating with I/O devices and standard I/O interfaces.	CO4	L2
d	Review Questions		

12	The input status bit in an interface-circuit is cleared as soon as the	CO3	L1
	input data register is read. Why is this important?		
13	What is the difference between a subroutine and an interrupt-service	CO4	L3
	routine?		
14	Consider a computer in which several devices are connected to a	CO3	L2
	common interrupt-request line. Explain how you would arrange for		
	interrupts from device j to be accepted before the execution of the		
	interrupt service routine for device i is completed. Comment in particular		
	on the times at which interrupts must be enabled and disabled at		
	various points in the system.		
15	Consider the daisy chain arrangement. Assume that after a device	CO4	L4
	generates an interrupt-request, it turns off that request as soon as it		
	receives the interrupt acknowledge signal. Is it still necessary to disable		
	interrupts in the processor before entering the interrupt service routine?		
	Why?		
16	Describe the operation of synchronous and asynchronous bus.	CO4	L2
17	Discuss the features of parallel and serial interface techniques.	CO3	L5
18	Describe how a read operation is performed in PCI bus.	CO3	L2
19	Explain how USB operates with split-traffic mode.	CO3	L3
е	Experiences	-	-
1			
2			
3			
4			
5			
5			
		I I	

E1. CIA EXAM - 1

a. Model Question Paper - 1

Crs		18EC35	Sem:		Marks:	30	Time:	75	minut	es	
Cod	le:										
Cou	rse:	Computer	r Corganiz	ation	·		I				
-	-	Note: An	swer any	3 quest	ions, each c	arry equ	al marks.		Mark	СО	Level
									S		
1	a	With neat	diagram,	discuss b	asic operatior	nal concep	ots of a comp	uter.	8	CO1	L1
	b	Write the	difference	between	RISC and CIS	C process	or		8	CO1	L2
	с	with an e	xample fo	or each i)	xplain the fo Index addres g mode iv) A	sing ii) Ir	ndirect addre	ssing		CO2	L4
2		Discuss	wiefly er	ding of m	a china instan	ation				<u> </u>	1.2
2	a	Discuss b	rietly enco	aing of n	nachine instru	ction.			8	CO2	L2

	b	A program contain 1000 instruction out of that 25% instructions requires 4 clock cycles. 40% instruction requires 5 clock cycles and	8	CO2	L4
		remaining 3 clock cycles for execution. Find the total time required			
		to execute the program running in 1GHz machine.			
	С	Explain different Rotate instructions.	7	CO2	L3
	d	Write an ALP program to copy 'N' numbers from array 'A' to array 'B' using direct addresses. (Assume A and B are starting memory locations of an array)	2	CO2	L2
3	а	With neat diagram describe the input output operations.	8	CO3	L1
	b	With neat sketches, explain various methods for handling multiple interrupt requests.	8	CO3	L1
	с	With neat diagram, explain in detail the input interface circuit.	7	CO4	L1
	d	Define Bus Arbitration. Explain any one approach of bus arbitration.	2	CO4	L1
4	a	Write a note on register in DMA interface.	8	CO4	L2
	b	With a block diagram explain how the printer interfaced to processor.	8	CO4	L2
	с	Explain the following with respect to U.S.B	9	CO4	L1
		i) U.S.B Architecture			
		ii) U.S.B protocols			

b. Assignment -1

Note: A distinct assignment to be assigned to each student.

				Мо	del Assignment	Questions					
Crs C	ode:	18EC35	Sem:	III	Marks:		Time:	9	0 - 120	minut	tes
Cours	se:	Comput	er Organ	ization							
Note:	Each	student	to answe	er 2–3 assi	ignments. Each	assignment	t carries eq	ual	mark.		
SNo	ι	JSN		As	signment Des	cription			Mark	СО	Level
									S		
1	1KT1	8EC001	What is b	ous? Expla	in single bus ar	nd multiple	bus struct	ure	10	CO1	L2
			used to i	nterconne	ct functional un	its in comp	uter systen	n.			
2	1KT1	8EC003	Explain	how the	performance	of the c	omputer o	can	10	CO1	L2
			measure	d?							
3	1KT1	8EC004	Explain I	byte addr	ess ability mer	ntion the tw	wo ways t	hat	10	CO2	L4
			byte ado	dresses ca	an be assigned	l across th	ne word w	/ith			
			proper ex	xample.							
4	1KT1	8EC005	What is	an addre	ssing mode? E	xplain diff	erent gene	eric	10	CO2	L4
			addressir	ng modes	with an exampl	e for each.					
5	1KT1	8EC008	What are	assemble	r directives? Exp	olain any tw	o directive	s.	10	CO2	L4
6	1KT1	8EC009	Explain	with neat	diagram I/O	interface	for an in	put	10	CO3	L2
			device.		-						
7	1KT1	8EC010	Explain 1	the follow	ving: 1) Interru	pt concept	t 2) interri	upt	10	CO3	L2
			hardware					•			

	methods. List the sequence of events involved in handling	10	CO3	L4
1KT18EC012	With neat block diagram, Explain different methods of handling multiple I/O devices.	10	CO3	L3
1KT18EC013	Define exception. Explain kinds of exceptions?	10	CO3	L2
1KT18EC014	What is bus? Explain single bus and multiple bus structure used to interconnect functional units in computer system.	10	CO1	L2
1KT18EC015	Explain how the performance of the computer can measured?	10	CO1	L2
1KT18EC016	Explain byte address ability mention the two ways that byte addresses can be assigned across the word with proper example.	10	CO2	L4
1KT18EC017	What is an addressing mode? Explain different generic addressing modes with an example for each.	10	CO2	L4
1KT18EC018	What are assembler directives? Explain any two directives.	10	CO2	L4
1KT18EC019	Explain with neat diagram I/O interface for an input device.	10	CO3	L2
1KT18EC020	Explain the following: 1) Interrupt concept 2) interrupt hardware.	10	CO3	L2
1KT18EC021	Explain different interrupt Enabling and Disabling methods. List the sequence of events involved in handling an interrupt request from a single device.	10	CO3	L4
1KT16EC030	With neat block diagram, Explain different methods of handling multiple I/O devices.	10	CO3	L3
1KT17EC001	Define exception. Explain kinds of exceptions?	10	CO3	L2
DIP	What are assembler directives? Explain any two directives.	10	CO2	L4
DIP	Explain with neat diagram I/O interface for an input device.	10	CO3	L2
DIP	Explain the following: 1) Interrupt concept 2) interrupt hardware.	10	CO3	L2
DIP	Explain different interrupt Enabling and Disabling methods. List the sequence of events involved in handling an interrupt request from a single device.	10	CO3	L4
	1KT18EC012 1KT18EC013 1KT18EC014 1KT18EC015 1KT18EC016 1KT18EC017 1KT18EC017 1KT18EC019 1KT18EC020 1KT18EC020 1KT18EC020 1KT16EC030 1KT16EC030 1KT17EC001 DIP DIP DIP	 methods. List the sequence of events involved in handling an interrupt request from a single device. 1KT18EC012 With neat block diagram, Explain different methods of handling multiple I/O devices. 1KT18EC013 Define exception. Explain kinds of exceptions? 1KT18EC014 What is bus? Explain single bus and multiple bus structure used to interconnect functional units in computer system. 1KT18EC015 Explain how the performance of the computer can measured? 1KT18EC016 Explain byte address ability mention the two ways that byte addresses can be assigned across the word with proper example. 1KT18EC017 What is an addressing mode? Explain different generic addressing modes with an example for each. 1KT18EC018 What are assembler directives? Explain any two directives. 1KT18EC019 Explain the following: 1) Interrupt concept 2) interrupt hardware. 1KT18EC020 Explain different interrupt Enabling and Disabling methods. List the sequence of events involved in handling an interrupt request from a single device. 1KT16EC030 With neat block diagram, Explain different methods of handling multiple I/O devices. 1KT17EC001 Define exception. Explain kinds of exceptions? DIP What are assembler directives? Explain any two directives. DIP Explain with neat diagram I/O interface for an input device. DIP Explain different interrupt concept 2) interrupt hardware. DIP Explain the following: 1) Interrupt concept 2) interrupt hardware. 	methods. List the sequence of events involved in handling an interrupt request from a single device.1KT18EC012With neat block diagram, Explain different methods of handling multiple I/O devices.101KT18EC013Define exception. Explain kinds of exceptions?101KT18EC014What is bus? Explain single bus and multiple bus structure used to interconnect functional units in computer system.101KT18EC015Explain how the performance of the computer can measured?101KT18EC016Explain byte address ability mention the two ways that byte addresses can be assigned across the word with proper example.101KT18EC017What is an addressing mode? Explain different generic addressing modes with an example for each.101KT18EC019Explain with neat diagram 1/O interface for an input device.101KT18EC020Explain different interrupt Enabling and Disabling an interrupt request from a single device.101KT18EC021Explain different interrupt Enabling and Disabling an interrupt request from a single device.101KT16EC030With neat block diagram, Explain different methods of handling multiple 1/O devices.101KT17EC001Define exception. Explain kinds of exceptions?10DIPExplain with neat diagram 1/O interface for an input device.101KT17EC001Define exception. Explain kinds of exceptions?10DIPWhat are assembler directives? Explain any two directives.10DIPExplain with neat diagram 1/O interface for an input device.10DIPExplain with neat diagram 1/	methods. List the sequence of events involved in handling an interrupt request from a single device.Image: Constraint of the sequence of events involved in handling multiple I/O devices.1KT18EC012With neat block diagram, Explain different methods of handling multiple I/O devices.10CO31KT18EC013Define exception. Explain kinds of exceptions?10CO31KT18EC014What is bus? Explain single bus and multiple bus structure used to interconnect functional units in computer system.10CO11KT18EC015Explain how the performance of the computer can measured?10CO21KT18EC016Explain byte address ability mention the two ways that byte addresses can be assigned across the word with proper example.10CO21KT18EC017What is an addressing mode? Explain different generic addressing modes with an example for each.10CO21KT18EC018What are assembler directives? Explain any two directives.10CO31KT18EC020Explain with neat diagram I/O interface for an input device.10CO31KT18EC021Explain different interrupt Enabling and Disabling methods. List the sequence of events involved in handling an interrupt request from a single device.10CO31KT17EC001Define exception. Explain kinds of exceptions?10CO3DIPWhat are assembler directives? Explain any two directives.10CO3DIPExplain with neat diagram, Explain different methods of handling multiple I/O devices.10CO31KT18EC020Explain different interrupt Enabling and Disabling device. </td

D2. TEACHING PLAN – 2

Module - 3

Title:	INTERRUPTS	Appr	8 Hrs
		Time:	
а	Course Outcomes	-	Bloom
			S
-	The student should be able to:	-	Level
1	Illustrate the principles for validating the input -output requirements .	CO5	L3

2	Examine the change requirements for interface maintenance .	CO6	L4
b	Course Schedule		
Class No	Module Content Covered	СО	Level
1	Accessing I/O Devices	CO5	L3
2	Interrupts	CO5	L3
3	Interrupt Hardware	CO5	L3
4	Enabling and Disabling Interrupts	CO5	L3
5	Handling Multiple Devices	CO6	L2
6	Controlling Device Requests.	CO6	L2
7	Direct Memory Access	CO6	L3
8	Direct Memory Access	CO6	L3
C	Application Areas	CO	Level
	Use to Demonstrate of input output organization like accessing I/O devices and handling of interrupt events.	CO3	L2
2	Expose different ways of communicating with I/O devices and standard I/O interfaces.	CO4	L2
d	Review Questions	-	-
12	The input status bit in an interface-circuit is cleared as soon as the input data register is read. Why is this important?	CO3	L1
13	What is the difference between a subroutine and an interrupt-service routine?	CO4	L3
14	Consider a computer in which several devices are connected to a common interrupt-request line. Explain how you would arrange for interrupts from device j to be accepted before the execution of the interrupt service routine for device i is completed. Comment in particular on the times at which interrupts must be enabled and disabled at various points in the system.	CO3	L2
15	Consider the daisy chain arrangement. Assume that after a device generates an interrupt-request, it turns off that request as soon as it receives the interrupt acknowledge signal. Is it still necessary to disable interrupts in the processor before entering the interrupt service routine? Why?	CO4	L4
16	Describe the operation of synchronous and asynchronous bus.	CO4	L2
17	Discuss the features of parallel and serial interface techniques.	CO3	L5
18	Describe how a read operation is performed in PCI bus.	CO3	L2
19	Explain how USB operates with split-traffic mode.	CO3	L3

е	Experiences	-	-
1			
2			
3			
4			
5			

Module - 4

Title:	Memory system	Appr Time:	8 Hrs
а	Course Outcomes	-	Bloom s
-	The student should be able to:	_	Level
1	Determine with the cost-performance issues and design trade-off in	C07	L2
	designing and constructing a computer processor including memory.		
2	Describes the virtual memory management and secondary storage devices.	CO8	L3
b	Course Schedule		
Class No	Module Content Covered	CO	Level
1	Memory System: Basic Concepts	C07	L2
2	Semiconductor RAM Memories	C07	L2
3	Read Only Memories	C07	L2
4	Speed, Size, and Cost	C07	L2
5	Cache Memories – Mapping Functions	C07	L2
6	Replacement Algorithms	C07	L2
7	Performance Considerations	CO8	L3
8	Virtual Memories	CO8	L3
9	Secondary Storage.	C08	L3
С	Application Areas	СО	Level
1	Acquire the knowledge of semiconductor RAM memories, Static memories, Asynchronous DRAMS, Read only memories.	C07	L2
2	 Analyze the memory location by having knowledge of various replacement algorithms. Understand the view of virtual memory and secondary storage devices. 	CO8	L3
d	Review Questions	-	-
1	Consider the dynamic memory cell. Assume that $C = 30$ femtofarads (10^{-15} F) and that leakage current through the transistor is about 0.25 picoamperes (10^{-12} A) . The voltage across the capacitor when it is fully charged is 1.5 V. The cell must be refreshed before this voltage drops below 0.9 V. Estimate the minimum refresh rate.	C07	L2

2	Give a critique of the following statement: "Using a faster processor chip results in a corresponding increase in performance of a computer even if the main-memory speed remains the same."	C07	L2
3	The cache block size in many computers is in the range of 32 to 128 bytes. What would be the main advantages and disadvantages of making the size of cache blocks larger or smaller?	C07	L2
4	In a computer with a virtual-memory system, the execution of an instruction may be interrupted by a page fault. What state information has to be saved so that this instruction can be resumed later? Note that bringing a new page into the main-memory involves a DMA transfer, which requires execution of other instructions. Is it simpler to abandon the interrupted instruction and completely re-execute it later? Can this be done?	CO8	L3
5	Magnetic disks are used as the secondary storage for program and data files in most virtual-memory systems. Which disk parameter(s) should influence the choice of page size?	CO8	L3
6	 A disk unit has 24 recording surfaces. It has a total of 14,000 cylinders. There is an average of 400 sectors per track. Each sector contains 512 bytes of data. i) What is the maximum number of bytes that can be stored in this unit ? ii) What is the data-transfer rate in bytes per second at a rotational speed of 7200 rpm? iii) Using a 32-bit word, suggest a suitable scheme for specifying the disk address. 	CO8	L3
7	Discuss the main features of SDRAM with a neat diagarm.	C08	L3
e 1	Experiences	-	_
2			
3			
4			
5			
4			
5			

E2. CIA EXAM – 2

a. Model Question Paper - 2

Crs		18EC35	Sem:	3	Marks:	30	Time:	80	minut		
Cod	e:										
Cou	rse:	Computer	organisa	tion							
-	-	Note: Answer any 2 questions, each carry equal marks.							Mark	CO	Level
									S		
1	a	Explain th	e Interrup	ot Hardwa	re.				5	L2	8

	b	Explain the Enabling and Disabling Interrupts.	5	L2	8
	с	Explain Direct Memory Access.	6	L2	9
		OR			
2	a	Explain the different techniques of IO mechanism.	5	L2	8
	b	Explain the different types of interrupt schemes.	6	L2	8
	с	Explain Controlling Device Requests.	6	L2	9
3	a	Explain Internal organization of memory chips.	7	L2	8
	b	Explain Asynchronous DRAMs.	7	L2	8
	с	Explain Static memories.	8	L2	9
		OR			
4	a	Explain Read Only Memories.	7	L2	8
	b	Explain basic concepts of memory.	7	L2	8
	с	Explain Semiconductor RAM Memories.	8	L2	9

b. Assignment – 2

Note: A distinct	assignment to	be assigned t	to each student.
Note. / Carstinet	assignment to	be assigned.	to cuch student.

				Model	Assignment	Questions				
Crs C	Code:	18EC35	Sem:	III	Marks:		Time:	90 - 120	minut	tes
Cours	se:	Comput	er Organiza	tion	·					
Note:	Each	student	to answer 2	–3 assignn	nents. Each	assignment	carries equ	al mark.		
SNo	U	SN		Assig	nment Des	cription		Mark s	СО	Level
1	1KT18		Explain con memory rea				ocessor wit	h 10	CO5	L2
2	1KT18		Draw the or working.	ganization	of 1Kx1 me	mory cell ar	nd explain i	s 10	CO5	L2
3	1KT18	T18EC004 Write briefly about read only memories and Flas memory's.						h 10	CO5	L4
4	1KT18		Draw the or its working.	ganization	of a 16x m	emory chip	and explai	n 10	CO6	L2
5	1KT18		What is ref dynamic me	-	xplain the o	oncept of	refreshing i	n 10	CO6	L2
6	16718		With a ne organizatior	-	ım explain	the virt	ual memoi	y 10	C07	L3
7	1KT18		What is vir virtual mem		-	2	explain ho	w 10	C07	L2
8	1KT18		With a nea address to a	-	-	e translatio	on of virtu	al 10	C07	L4
9	1KT18	8EC012	Explain the	4-bit carry	look ahead	adder.		10	CO8	L3
10	1KT18		Design a log of two 'n' ni	-	•	addition and	d subtractio	n 10	CO8	L2
11	1KT18		Explain con memory rea			<i>,</i> ,	ocessor wit	h 10	CO5	L2

12		Draw the organization of 1Kx1 memory cell and explain its working.	10	CO5	L2
13		Write briefly about read only memories and Flash memory's.	10	CO5	L4
14		Draw the organization of a 16x memory chip and explain its working.	10	CO6	L2
15		What is refreshing? Explain the concept of refreshing in dynamic memory?	10	CO6	L2
16		With a neat diagram explain the virtual memory organization.	10	C07	L3
17		What is virtual memory? With a diagram explain how virtual memory address is translated.	10	C07	L2
18		With a neat diagram explain the translation of virtual address to a physical address?	10	C07	L4
19	1KT16EC030	Explain the 4-bit carry look ahead adder.	10	CO8	L3
20		Design a logic circuit to perform addition and subtraction of two 'n' numbers X and Y.	10	CO8	L2
21		With a neat diagram explain the virtual memory organization.	10	C07	L3
22		What is virtual memory? With a diagram explain how virtual memory address is translated.	10	C07	L2
23		With a neat diagram explain the translation of virtual address to a physical address?	10	C07	L4
24	DIP	Explain the 4-bit carry look ahead adder.	10	CO8	L3

D3. TEACHING PLAN – 3

Module - 5

Title:	Basic processing unit and Embedded system	Appr	8 Hrs
		Time:	
а	Course Outcomes	-	Bloom
			S
-	The student should be able to:	-	Level
1	Describe the set of hardware simulators to model a complex processor at	CO9	L2
	the behavioral level.		
2	Determine the current event in the microprocessor research and industry	CO10	L2

	of multiprocessor and embedded systems.		
b	Course Schedule		
Class No	Module Content Covered	СО	Leve
1	Basic Processing Unit: Some Fundamental Concepts	CO9	L2
2	Execution of a Complete Instruction	CO9	L2
3	Multiple Bus Organization	CO9	L2
4	Hard-wired Control	CO9	L2
5	Micro programmed Control	CO9	L2
6	Pipe lining	CO9	L2
7	Embedded Systems and Large Computer Systems: Basic Concepts of pipe lining	CO10	L2
8	Examples of Embedded Systems	CO10	L2
9	Processor chips for embedded applications	CO10	L2
10	Simple Micro controller	CO10	L2
11	The structure of General-Purpose Multiprocessors	CO10	L2
С	Application Areas	СО	Leve
1	Understand basic processing unit and organization of simple processor	CO9	L2
	with multiple bus organizations.		
2	Demonstration of various embedded system with different devices and	CO10	L2
	their processor chips to gain the importance of life-long learning.		
d	Review Questions	_	_
1	Why is the Wait-for-memory-function-completed step needed for	CO10	L1
	reading from or writing to the main memory?		
2	For the single bus organization, write the complete control sequence for	CO10	L3
	the instruction: Move (R1), R1		
3	Write the sequence of control steps required for the single bus	CO9	L2
	organization in each of the following instructions:		
	Add the immediate number NUM to register R1.		
	Add the contents of memory-location NUM to register R1.		
	Add the contents of the memory-location whose address is at		
	memory-location NUM to register R1.		
	Assume that each instruction consists of two words. The first word		
	specifies the operation andN the addressing mode, and the second word		
	contains the number NUM		
4	Show the control steps for the Branch on Negative instruction for a	CO9	L4
	processor with three-bus organization of the data path		
5	With block diagram, explain NUMA	CO10	L2
	multiprocessor.		
6	Write a short not on home telemetry.	CO10	L2
6	white a short hot on home telementy.	00.0	

8	With block diagram, explain operation of microcontroller chips.	CO10	L3
9	With block diagram, explain serial I/O interface. Also, explain serial interface register	CO9	L4
10	Draw and explain multiple bus organization along with its advantages.	CO10	L3
11	Write down the control sequence for the instruction Add (R3) , R1 for single bus organization	CO10	L3
e	Experiences	_	_
1			
2			
3			
4			
5			

E3. CIA EXAM – 3

a. Model Question Paper - 3

Crs		18EC35	Sem:	Ш	Marks:	30	Time:	75 minu	ites			
Cod		<u> </u>										
Cou	rse:	Computer	-									
-	-	Note: Ans	swer any	2 questi	ons, each c	arry equ	ual marks.	Marl s		Level		
1	a	Briefly explain any two mapping function used in cache memory.							C07	L2		
	b		a neat diagram explain the internal organization of memory 13 CO (2M*8 and dynamic memory chip)									
2	a	Explain the i) Hit rate a iii) Memor	8	CO8	L2							
	b	iii) Memory Bandwidth. iv) Virtual memory organization.What is virtual memory? With a diagram explain how virtual memoraddress translation takes place.							CO8	L2		
	с	Differentiate between hardwired control and micro program control.								L2		
3	a	With a figure explain Single Bus Organization of data path inside a processor.								L2		
	b	Write the s instruction			steps requir	ed to exe	ecute the follow	ing 13	CO9	L3		
4	a	With a block diagram explain the working of microwave oven in an embedded system.							CO10	L2		
	b		quence fo	•	-		PU. And write 6 for multiple b		CO9	L3		

b. Assignment – 3

Note: A distinct assignment to be assigned to each student.

<u> </u>	1	10565-	C		del Assignmei	-				<u>, , , , , , , , , , , , , , , , , , , </u>	
		18EC35			Marks:	10 /	10	Time:	90 - 120) minut	es
Cours		-	er Organiz						<u> </u>		
			to answer		gnments. Eacl	-		t carries equ			1
SNo	ι	JSN		As	signment De	script	ion		Mark	CO	Leve
1	1//71	050001	NAV '			<u> </u>			S	600	1.2
1	IKII				ntrol sequenc		ne in	struction Ad	d 10	CO9	L2
-	1//71				e-bus organiz			<u> </u>	10	600	
2	IKII				es explain th	e orgai	nizati	on of a micr	o 10	CO9	L3
			programm								
3	1KT1			gram ex	plain typical s	single	bus p	processor dat	a 10	CO10	L4
	path?										
4	1KT1			ls hardv	vired and mi	cro pr	ograr	nmed contro	ol 10	CO10	L3
			unit?								
5	1KT1		-	e process	s of fetching a	a word	from	memory wit	h 10	CO10	L3
			diagram?								
6	1KT1			-	am explain t	he wor	king	of microway	e 10	CO10	L2
			oven in an embedded system.								
7	1KT1			-	multiple bus	-				CO9	L3
			write the	control	sequence f	or the	e ins	truction AD	D		
			R4,R5,R6 f	or multip	ole bus organi	zation.					
8	1KT18EC011 Write down the control sequence for the instruction Ad						d 10	CO9	L2		
			R4, R5, R6 for three-bus organization.								
9	1KT1	8EC012	EC012 With a neat sketches explain the organization of a micro					o 10	CO9	L3	
			programmed control unit.?								
10	1KT18EC013 With a diagram explain typical single bus proc						processor dat	a 10	CO10	L4	
			path?								
11	1KT1	8EC014	Differentia	ls hardv	vired and mi	cro pr	ograr	nmed contro	ol 10	CO10	L3
			unit?								
12	1KT1	8EC015	Explain the	e process	s of fetching a	a word	from	memory wit	h 10	CO10	L3
			diagram?								
13	1KT1	8EC016	With a blo	ock diagr	am explain t	he wor	king	of microway	e 10	CO10	L2
			oven in an	embedd	ed system.						
14	1KT1	8EC017	Draw and	explain	multiple bus	organiz	zatior	n of CPU. An	d 10	CO9	L3
			write the	control	sequence f	or the	e ins	truction AD	D		
			R4,R5,R6 f	or multip	ole bus organi	zation.					
15	1KT1	8EC018	Write dow	n the co	ntrol sequenc	e for t	he in	struction Ad	d 10	CO9	L2
			R4, R5, R6	for three	e-bus organiz	ation.					
16	1KT18EC019 With a neat sketches explain the organization of a micr						o 10	CO9	L3		
			programm	ed contro	ol unit.?						
17	1KT1	8EC020	With a dia	gram ex	plain typical s	single	bus p	processor dat	a 10	CO10	L4
			path?			-					

18	Differentials hardwired and micro programmed control unit?	10	CO10	L3
19	Explain the process of fetching a word from memory with diagram?	10	CO10	L3
20	With a block diagram explain the working of microwave oven in an embedded system.	10	CO10	L2
21	Draw and explain multiple bus organization of CPU. And write the control sequence for the instruction ADD R4,R5,R6 for multiple bus organization.	10	CO9	L3
22	With a block diagram explain the working of microwave oven in an embedded system.	10	CO9	L2
23	Draw and explain multiple bus organization of CPU. And write the control sequence for the instruction ADD R4,R5,R6 for multiple bus organization.	10	CO9	L3
24	With a diagram explain typical single bus processor data path?	10	CO10	L4

F. EXAM PREPARATION

1. University Model Question Paper

Cour	se:	Computer Org	ganization				Month	/ Year	June /	2018
Crs (Code:	18EC35	Sem:	111	Marks:	100	Time:		180	
									minut	es
-	Not	Answer all FIV	'E full questi	ons. All ques	stions carry e	equal marks		Mark	СО	Leve
	е							S		I
1	a	Define Addre modes.	ssing Mode	. Give the o	details of d	ifferent add	dressing	10	CO1	L2
	b	 Describe the basic operational concepts between the processor and memory. OR 								L2
2	a	What is Subro with an examı	10	CO1	L2					
	b	How to encod examples.	e assembly	nstructions	into 32-bit	words? Expl	ain with	10	CO2	L4
3	a	Define Bus A arbitration me	10	C03	L2					
	b	With the help SCSI bus invol			fly discuss	the main pł	nases of	10	CO4	L2
				OR						
4	a	With neat diag	grams, expla	in how to in	terface print	er to the pro	ocessor.	10	CO3	L2
	b	Explain the fo devices.	ollowing me	thods of hai	ndling interr	upts from	multiple	10	CO4	L2
		i) Interrupt ne	sting/priorit	y structure						

		ii) Daisy chain method.			
5	а	Describe how to translate virtual address into physical address with	10	CO5	L2
		diagram.			
	b	Draw and explain the internal organisation of 2M \times 8 asynchronous	10	CO6	L2
		DRAM chip.			
		OR			
6	а	Describe any two mapping functions in cache.	10	CO5	L2
	b	Describe the principles of magnetic disk.	10	CO6	L2
7	a	form the operations on 5 — bit signed numbers using 2's complement system. Also indicate whether overflow has occurred.	10	C07	L3
		i) $(-10) + (-13)$			
		ii) (-10) — (-13)			
		iii) (-2) + (-9).			
	b	Perform the multiplication of 13 and -6 using Booth algorithm and	10	C08	L3
		Bit- pair recording method.			
		OR			
8	а	Perform the restoring division for 8/3 by showing all the steps	10	C07	L3
	b	Explain the logic diagram of $4 - bit$ carry look ahead adder and its operations.	10	CO8	L2
9	а	Draw and explain multiple bus organization along with its	10	CO9	L2
5	u	advantages.	10	205	22
	b	Write down the control sequence for the instruction Add (R3) , R1 for	10	CO10	L3
		single bus organization			
		OR			
10	а	With block diagram, explain the general requirements and working of digital camera.	10	CO9	L2

2. SEE Important Questions

Cour	se:	ourse: Computer Organization Month						Month	/ Year	June /	2018	
Crs C	ode:	18EC35	Sem: III Marks: 100 Time:					180				
											minute	
	Not Answer all FIVE full questions. All questions carry equal marks.								-	-		
	е											
Mod	Qno.	Important C	Question							Mark	СО	Year
ule										S		
1	1	With neat	diagram e	explain	simple	I/O	operations	involv	ing in	5	CO1	2018
		keyboard ar	nd display c	levice.								

	2	Define subroutine. Explain subroutine linkage using a link register and stack frame.	6	C01	2017
	3	Explain different parameter passing technique with usage of stack in nested subroutine calls.	7	C01	2015
	4	Explain different shift and rotate instructions with proper examples.	7	CO2	2015
	5	Explain encoding of machine instruction into 32-bit word.	8	CO2	2016
2	1	What is necessity of DMA controller? Explain (1) Cycle stealing (2) Burst mode.	6	CO3	2017
	2	Show the possible register configurations in DMA interface, Explain direct memory access(DMA)	7	CO3	2018
	3	What is necessity of BUS Arbitration? Explain different methods of bus arbitration.	6	CO4	2017
	4	Define BUS? Explain with neat detailed timing diagram for the input transfer using multiple clock cycle of synchronous Bus?	7	CO4	2016
	5	Explain with neat detailed timing diagram for handshake control of data transfer during an output operation.	7	CO4	2015
3	1	Explain the working of 16MB DRAM chip configured as 1M*16 (2M*8) memory chip.	5	CO5	2015
	2	Define: i) Memory latency ii) Memory bandwidth iii) Hit rate iv) Miss penalty.	8	CO5	2016
	3	With diagram explain different types of memory's with speed, cost and size.	6	CO5	2017
	4	Define cache memory? Explain different cache mapping functions.	6	CO5	2018
	5	Explain the features of memory design that leads to improved performance of computer.	6	CO6	2015
4	1	Given $A=10101$ and $B=00100$, Perform A/B using restoring division algorithms.	5	Co7	2016
	2	Perform signed multiplication of numbers (-12) and (-11) using Booth's algorithm.	7	C07	2016
	3	Design 4-bit carry look ahead logic and explain how it is faster than 4-bit ripple adder.	8	C07	2017
	4	Explain normalization, excess-exponent and special values with respect to IEEE floating point representation.	5	CO8	2018
	5	Perform the following operations on the 5-bit signed numbers using 2's compliment representation system. Also indicate whether overflow has occurred i) $(-10) + (-13)$ ii) $(-10) - (+4)$ iii) $(-3) + (-8)$ iv) $(-10) - (+7)$	8	CO8	2014
5	1	Write and explain the control sequences for the execution of an	8	CO9	2015
		unconditional branch instruction.			
	2	Draw and explain the multi-bus organization of the data path inside	6	CO9	2016

	a processor?			
3	7	CO10	2015	
	Explain with neat diagram structure of general purpose multiprocessor?	8	CO10	2018
5	Explain Agile Manifesto.	10	CO9	L2

G. Content to Course Outcomes

1. TLPA Parameters

		– Exam	ipie cou	rse			
Мо	Course Content or Syllabus	Content	Blooms'	Final	Identifie	Instructi	Assessmen
dul	(Split module content into 2 parts which	Teachin	Learnin	Bloo	d Action	on	t Methods
e-	have similar concepts)	g Hours	g Levels	ms'	Verbs	Methods	to Measure
#			for	Level	for	for	Learning
			Content		Learning	Learning	
A	В	С	D	E	F	G	Н
1	Describe the basic structure of Computer,	4	L4	L4	-	Lecture	Slip test
	Performance measurement with CPU clock.		Analyze		Understa		
				yze	nd		
					-		
					Explore		
1	Understand the impact of instruction set		L3	L3	-Identify	Explanat	Q & A
	architecture on cost-performance of		Apply	Appl	-	ion	
	computer design and analyze with various			У			
	addressing methodologies.						
2	Determine the impact of interrupt on input	4	L3	L3	-	Descript	Q & A
	output devices in the process of interaction		Apply	Appl	Interpret	ion	
	between various components.			У	-		
2	Understand different kind of input output	4			_	Explanat	Q & A
	interfaces available for computer system by		L4	L4	Compare	ion	
	demonstrations in lab with disassembling		Analyze	Anal	_		
	of computer.			yze			
3	Determine with the cost-performance	4	L3	L3	_	Examine	Focused on
	issues and design trade-off in designing		Apply	Appl	Illustrate		analyzing /
	and constructing a computer processor			У	_		compare
	including memory.						
3	Describes the virtual memory management	4	L4	L4	_	Descript	Q & A
	and secondary storage devices.		Analyze	Anal	Examine	ion	
				yze	-		
4	Determine the knowledge of designing a	4	L4	L4	-Analyze	Explanat	Slip test
	logic circuits and apply to computer		Analyze	Anal	–	ion	

Table 1: TLPA – Example Course

system. 4 Solve

the

problems

in

Q & A

-Identify Descript

yze

L2

L2

4

binary

	representation by using various methods and evaluate with standard circuits.		Underst and	Unde rstan d		ion	
5	Describe the set of hardware simulators to model a complex processor at the behavioral level.	4		L2 Unde rstan d	- Understa nd -	Develop	Q & A
5	Determine the current event in the microprocessor research and industry of multiprocessor and embedded systems.	4	L2 Underst and	L2 Unde rstan d		Descript ion	Q & A

2. Concepts and Outcomes:

		Tab	le 2: Conce	pt to Outcome – E	xample Course	
Мо	Learning or	Identified	Final	Concept	CO Components	Course Outcome
dul	Outcome	Concepts	Concept	Justification	(1.Action Verb,	
e-	from study	from		(What all Learning	2.Knowledge,	
#	of the	Content		Happened from	3.Condition /	Student Should
	Content or			the study of	Methodology,	be able to
	Syllabus			Content / Syllabus.	4.Benchmark)	
				A short word for		
				learning or		
				outcome)		
A	Ι	J	K	L	М	N
1	Describe the		Operations	Process activities	-Explore	Explore the various
	basic	ns of	of computer			types of system
	structure of	computer			component or	
	Computer,				process –system models	
	Performance				-realistic constraints.	
	measuremen					
	t with CPU					
	clock.					
1	Understand	Machine	Machine	Requirement		ldentify the
	the impact of	instructio	instructions	Analysis		development
	instruction	ns	structure		development,	requirements
	set	structure			–Requirements Engineering	
	architecture				Processes.	
	on cost-					
	performance					
	of computer					
	design and					

	analyze with					
	various					
	addressing					
	methodologi					
	es.					
2	Determine	Input	Input output	Development	–Interpret	Interpret the usage
	the impact of	output	organization	models		of suitable models
	interrupt on	organizat	and		requirements	
	input output	ion and	interrupts		-appropriate design	
	devices in	interrupt				
	the process	s				
	of					
	interaction					
	between					
	various					
	components.					
2	Understand	Standard	Standard	Design techniques	-Compare	Compare various
	different	input	input output	-	– development	design techniques
	kind of input		interfaces		-Design techniques,	for development.
		interfaces				
	interfaces					
	available for					
	computer					
	system by					
	demonstrati					
	ons in lab					
	with					
	disassemblin					
	g of					
	computer.					
3		Memory	Memory	Levels of software	-Illustrate	Illustrate the
		-	,	testing		principles for
	cost-	oyoteini	5,500	cesting	maintenance	validating the
	performance				practices	requirements .
	issues and				-Validating	
	design					
	trade-off in					
	designing					
	and					
	constructing					
	a computer					
	processor					
	including					
	memory.					
3		Storage	Storage	Evolution process	-Examine	Examine the
ر	Describes	Juliaye	Juliaye	Evolution process		LAINING LIE

	the virtual	devices	devices		- Maintenance	change
	memory	GEVICES			-Change requirement	
	-					maintenance .
	management and					maintenance.
	secondary					
	storage					
	devices.					
				Development		Analyze the plans
			Operations	panning	– project	
		Operatio			management -quality assurance	
	of designing	ns			procedures	
	a logic				procedures	
	circuits and					
	apply to					
	computer					
	system.					
4	Solve the	Different	Different	Quality assurance	-Identify	Identify the quality
	problems in	methodol	methodologi		– development	
			es	•	process	procedures
	representatio	-			-Quality assurance	
	n by using				procedures	
	various					
	methods and					
	evaluate with					
	standard					
	circuits.					
-	Describe the	Drococcin	Drococcing	Agile methods for	Understand	Understand the
5			_	-		
		g unit		software		importance of agile
	hardware			development		project
	simulators to					management
	model a					
	complex					
	processor at					
	the					
	behavioral					
	level.					
5	Determine	Embedde		Agile methods for		Explain the
	the current	d system	system and	software		method for
	event in the	and large	large	development	-methods	Development .
	microproces	computer	computer			
	sor research	system	system			
	and industry					
	of					
	multiprocess					
	or and					

embedded			
systems.			